The function of tcf3 in medaka embryos: efficient knockdown with pePNAs
نویسندگان
چکیده
BACKGROUND The application of antisense molecules, such as morpholino oligonucleotides, is an efficient method of gene inactivation in vivo. We recently introduced phosphonic ester modified peptide nucleic acids (PNA) for in vivo loss-of-function experiments in medaka embryos. Here we tested novel modifications of the PNA backbone to knockdown the medaka tcf3 gene. RESULTS A single tcf3 gene exists in the medaka genome and its inactivation strongly affected eye development of the embryos, leading to size reduction and anophthalmia in severe cases. The function of Tcf3 strongly depends on co-repressor interactions. We found interactions with Groucho/Tle proteins to be most important for eye development. Using a dominant negative approach for combined inactivation of all groucho/tle genes also resulted in eye phenotypes, as did interference with three individual tle genes. CONCLUSIONS Our results show that side chain modified PNAs come close to the knockdown efficiency of morpholino oligonucleotides in vivo. A single medaka tcf3 gene combines the function of the two zebrafish paralogs hdl and tcf3b. In combination with Groucho/Tle corepressor proteins Tcf3 acts in anterior development and is critical for eye formation.
منابع مشابه
Role of cardiac natriuretic peptides in seawater adaptation of medaka embryos as revealed by loss-of-function analysis.
Cardiac natriuretic peptides (atrial natriuretic peptide, ANP; b-type natriuretic peptide, BNP; ventricular natriuretic peptide, VNP) and their direct ancestor C-type natriuretic peptide 3 (CNP3) exert potent osmoregulatory actions in fish. However, very little is known about their roles in embryonic osmoregulation. In this study, we performed loss-of-function analysis using euryhaline medaka (...
متن کاملIdentification of Pluripotency Genes in the Fish Medaka
Stem cell cultures can be derived directly from early developing embryos and indirectly from differentiated cells by forced expression of pluripotency transcription factors. Pluripotency genes are routinely used to characterize mammalian stem cell cultures at the molecular level. However, such genes have remained unknown in lower vertebrates. In this regard, the laboratory fish medaka is unique...
متن کاملComparative Toxicity of Different Crude Oils on the Cardiac Function of Marine Medaka (Oryzias melastigma) Embryo
The acute toxic effect of different crude oils (heavy crude oil and bonny light crude oil) on embryos of marine medaka Oryzias melastigma was measured and evaluated by exposure to the water-accommodated fraction (WAF) in the present study. The cardiac function of medaka embryos was used as target organ of ecotoxicological effect induced by oil exposure. Results showed that the developing marine...
متن کاملTwist functions in vertebral column formation in medaka, Oryzias latipes
Medaka twist, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the sclerotome during embryogenesis. We previously established a line of twist-EGFP transgenic medaka, whose EGFP expression is regulated by the twist promoter; therefore, we could observe the behavior of sclerotomal cells in vivo. In the transgenic medaka embryos, EGFP-positive sclerotomal cells migrated dorsal...
متن کاملDechorionation of medaka embryos and cell transplantation for the generation of chimeras.
Medaka is a small egg-laying freshwater fish that allows both genetic and embryological analyses and is one of the three vertebrate model organisms in which genome-wide phenotype-driven mutant screens were carried out (1). Divergence of functional overlap of related genes between medaka and zebrafish allows identification of novel phenotypes that are unidentifiable in a single species (2), thus...
متن کامل